Block Copolymer Self Assembly for Design and Vapor Phase Synthesis of One-Dimensional Nanostructured Materials

نویسندگان

  • A. Rahman
  • C. T. Black
چکیده

Block copolymer thin films provide a robust method for generating regular, uniform patterns with sub-100 nanometer length scales over arbitrarily large areas. A significant advantage of such block copolymer-based patterning is its ease of integration with all other aspects of traditional thin-film processing, including plasma-based etching and metallization. Such process compatibility ensures a host of application opportunities in designing material properties through control of their nanostructure. Here, we describe our use of block copolymer self assembly for design and vapor phase synthesis of quasi one-dimensional nanostructured materials made of metals, semiconductors, and insulators. The precise control of surface texture afforded by block copolymer-based patterning can influence macroscopic materials properties such as optical reflectance and hydrophobicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facile Synthesis of Nanostructured Carbon through Self-Assembly between Block Copolymers and Carbohydrates

Nanostructured carbon materials, including carbon nanotubes, membranes, and particles, are an important nanomaterial for many applications in nanoelectronics, sorption and separation, sensors, catalysis, and energy conversion and storage (e.g., double layer capacitors, and hydrogen storage). Varied methods have been developed to synthesize nanostructured carbon materials, such as DC arc-dischar...

متن کامل

Three dimensional single-walled carbon nanotubes.

We report a simple fabrication method of creating a three-dimensional single-walled carbon nanotube (CNT) architecture in which suspended CNTs are aligned parallel to each other along the conventionally unused third dimension at lithographically defined locations. Combining top-down lithography with the bottom-up block copolymer self-assembly technique and utilizing the excellent film forming c...

متن کامل

Well-ordered nanostructure SiC ceramic derived from self-assembly of polycarbosilane-block-poly(methyl methacrylate) diblock copolymer.

The fabrication of SiC ceramic materials with an ordered nanostructure through the direct pyrolysis of a self-assembled inorganic-organic block copolymer has generally been unsuccessful even though the versatile processibility has been demonstrated with organic-organic block copolymers. Here we report the synthesis of a novel polycarbosilane-block-poly(methyl methacrylate) diblock copolymer thr...

متن کامل

Multicomponent Nanomaterials with Complex Networked Architectures from Orthogonal Degradation and Binary Metal Backfilling in ABC Triblock Terpolymers

Selective degradation of block copolymer templates and backfilling the open mesopores is an effective strategy for the synthesis of nanostructured hybrid and inorganic materials. Incorporation of more than one type of inorganic material in orthogonal ways enables the synthesis of multicomponent nanomaterials with complex yet well-controlled architectures; however, developments in this field hav...

متن کامل

Synthesis of a Nanostructured Molecularly Imprinted Acrylic acid-Based Network Copolymer as a Solid Sorbentforthe Quercetinextraction

A straightforward approach for the extraction of the quercetin was carried out by a nanoporous molecularly imprinted acrylic acid-based network copolymer as asolid sorbent. This technique involves a molecular template (quercetin) which is surrounded by functional monomers and are subsequently co-polymerized in the presence of an excess of the cross linkers. In this process, three-dimensional bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014